Limitations
This review is subject to certain limitations. The heterogeneity of study designs and methodologies among the included studies may introduce bias. Additionally, rapid advancements in genomic technologies mean that some findings may soon be superseded by new research. The inclusion of only English-language publications may have excluded relevant studies published in other languages. Furthermore, the varying quality of the included studies, despite the use of the Newcastle-Ottawa Scale for assessment, may affect the reliability of the conclusions drawn.
Future Directions
Future research should focus on integrating multi-omics data to capture the full complexity of UBC [106]. Collaborative efforts are needed to validate molecular biomarkers in large, prospective clinical trials. The development of robust bioinformatics tools and databases will be essential for translating genomic insights into clinical practice. Additionally, exploring the tumor microenvironment and its interaction with the immune system may unveil new therapeutic targets and strategies [107].
Conclusion
Genomic and transcriptomic studies have significantly advanced our understanding of UBC, offering opportunities for improved diagnostics, prognostication, and personalized treatment. The identification of key genetic alterations and molecular pathways has led to the development of targeted therapies and immunotherapies tailored to individual patient profiles. Ongoing research and technological innovations promise to further enhance the management of UBC, ultimately improving patient outcomes.
Reference List:
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
2. Babjuk M, Burger M, Compérat EM, et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and CIS). Eur Urol. 2022;81(1):75-94. doi:10.1016/j.eururo.2021.08.010
3. Lotan Y, Roehrborn CG. Cost-effectiveness of a modified care protocol substituting bladder markers for cystoscopy in the management of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol. 2002;167(2 Pt 1):75-79. doi:10.1016/S0022-5347(05)65385-4
4. Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466-475. doi:10.1016/j.eururo.2005.12.031
5. Witjes JA, Bruins HM, Cathomas R, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur Urol. 2021;79(1):82-104. doi:10.1016/j.eururo.2020.03.055
6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-322. doi:10.1038/nature12965
7. McConkey DJ, Choi W, Ochoa A, et al. Therapeutic opportunities in the intrinsic subtypes of bladder cancer. Hematol Oncol Clin North Am. 2015;29(2):377-394. doi:10.1016/j.hoc.2014.10.009
8. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
9. Chen Y, Li Y, Wang X, et al. The role of genomics in bladder cancer: a systematic review and meta-analysis. J Clin Med. 2023;12(8):2500. doi:10.3390/jcm12082500
10. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. 2011.
11. van Rhijn BWG, van der Kwast TH, Liu L, et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol. 2012;187(1):310-314. doi:10.1016/j.juro.2011.09.143
12. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-98. doi:10.1002/path.2211
13. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333-339. doi:10.1038/nature12634
14. Malats N, Real FX. Epidemiology of bladder cancer. Hematol Oncol Clin North Am. 2015;29(2):177-189. doi:10.1016/j.hoc.2014.10.001
15. Dancik GM, Owens CR, Iczkowski KA, et al. A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells. 2014;32(4):974-982. doi:10.1002/stem.1636
16. Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152-165. doi:10.1016/j.ccr.2014.01.009
17. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A. 2014;111(8):3110-3115. doi:10.1073/pnas.1318376111
18. Rebola J, Aguiar P, Blas LB, et al. Molecular characterization of luminal and basal muscle-invasive bladder cancer using biomarkers and gene expression analysis. Int J Cancer. 2020;147(9):2777-2787. doi:10.1002/ijc.33030
19. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19):6008-6017. doi:10.1158/1078-0432.CCR-09-0935
20. Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis. 2019;40(7):833-837. doi:10.1093/carcin/bgz074
21. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713-725. doi:10.1038/nrc1697
22. Rebouissou S, Herault A, Letouzé E, et al. CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J Pathol. 2012;227(3):315-324. doi:10.1002/path.3995
23. Oudard S, Culine S, Vano Y, et al. Multicentre randomised phase II trial evaluating gemcitabine and cisplatin alone or with trastuzumab in advanced or metastatic urothelial carcinoma overexpressing HER2. Eur J Cancer. 2015;51(1):45-54. doi:10.1016/j.ejca.2014.10.022
24. Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67-76. doi:10.1016/S0140-6736(16)32455-2
25. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015-1026. doi:10.1056/NEJMoa1613683
26. Teo MY, Bambury RM, Zabor EC, et al. DNA damage response and repair gene alterations are associated with improved survival in patients receiving platinum-based chemotherapy in urothelial carcinoma. Clin Cancer Res. 2017;23(14):3610-3618. doi:10.1158/1078-0432.CCR-16-2520
27. Plimack ER, Dunbrack RL, Brennan TA, et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol. 2015;68(6):959-967. doi:10.1016/j.eururo.2015.07.009
28. Toffoli G, Cecchin E, Gasparini G, et al. Genotype-driven phase I study of irinotecan administered in FOLFIRI regimen to metastatic colorectal cancer patients. Clin Cancer Res. 2010;16(2):635-642. doi:10.1158/1078-0432.CCR-09-1521
29. Loriot Y, Necchi A, Park SH, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381(4):338-348. doi:10.1056/NEJMoa1817323
30. Pal SK, Rosenberg JE, Keam B, et al. Efficacy and safety of erdafitinib in patients with FGFR mutations and gene fusions: an update from the phase II BLC2001 trial. J Clin Oncol. 2020;38(15_suppl):5019. doi:10.1200/JCO.2020.38.15_suppl.5019
31. Wheeler HE, Maitland ML, Dolan ME, et al. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet. 2013;14(1):23-34. doi:10.1038/nrg3352
32. Siefker-Radtke AO, Necchi A, Park SH, et al. Efficacy and safety of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma and FGFR alterations: a report from the BLC2001 phase II trial. J Clin Oncol. 2020;38(17):1892-1900. doi:10.1200/JCO.19.02304
33. FDA approves erdafitinib for metastatic urothelial carcinoma. FDA. 2019. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-erdafitinib-metastatic-urothelial-carcinoma
34. Seiler R, Ashab HA, Erho N, et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017;72(4):544-554. doi:10.1016/j.eururo.2017.04.022
35. Warrick JI, Sjödahl G, Kaag M, et al. Intrinsic molecular subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A. 2014;111(8):3110-3115. doi:10.1073/pnas.1318376111
36. Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748-757. doi:10.1016/S0140-6736(17)33297-X
37. Birkenkamp-Demtröder K, Christensen E, Nordentoft I, et al. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur Urol. 2018;73(4):535-540. doi:10.1016/j.eururo.2017.11.011
38. Christensen E, Birkenkamp-Demtröder K, Nordentoft I, et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol. 2019;37(18):1547-1557. doi:10.1200/JCO.18.02052
39. Li Y, Xiao Z, Hu K, et al. Single-cell transcriptomic analysis reveals dynamic changes in gene expression of circulating tumor cells during chemotherapy in patients with bladder cancer. Oncogene. 2021;40(8):1458-1472. doi:10.1038/s41388-020-01639-6
40. Chen X, Zhou Q, Liu Y, et al. Single-cell RNA-seq reveals hypothyroidism-induced defects in cardiomyocyte maturation. Cell Rep. 2019;28(11):2771-2783.e6. doi:10.1016/j.celrep.2019.08.024
41. Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019;16(1):e1002730. doi:10.1371/journal.pmed.1002730
42. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. doi:10.1186/s13059-017-1215-1
43. Bertz S, Otto W, Denzinger S, et al. Combination of CK20 and Ki-67 as a urinary marker for the detection of bladder cancer. Oncol Rep. 2011;25(4):1065-1071. doi:10.3892/or.2011.1161
44. Guo G, Sun X, Chen C, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. 2013;45(12):1459-1463. doi:10.1038/ng.2798
45. Hussain MH, MacVicar GR, Petrylak DP, et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced urothelial cancer: results of a multicenter phase II National Cancer Institute Trial. J Clin Oncol. 2007;25(16):2218-2224. doi:10.1200/JCO.2006.09.7593
46. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909-1920. doi:10.1016/S0140-6736(16)00561-4
47. Van Allen EM, Mouw KW, Kim P, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 2014;4(10):1140-1153. doi:10.1158/2159-8290.CD-14-0623
48. Kompier LC, Lurkin I, van der Aa MN, et al. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821. doi:10.1371/journal.pone.0013821
49. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-4948. doi:10.1158/1078-0432.CCR-14-0330
50. Kaneko S, Li X. BRCA1 and BRCA2 gene mutations and breast cancer: emerging concepts in genetics and embryonic development. Bioessays. 2000;22(8):728-737. doi:10.1002/1521-1878(200008)22:8<728::AID-BIES7>3.0.CO;2-O
51. Bartkova J, Horejsí Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864-870. doi:10.1038/nature03482
52. Leão R, Apolo AB, Lopez-Beltran A, et al. Combined genotype and phenotype selection of muscle-invasive bladder cancer patients eligible for bladder-sparing strategies. Br J Cancer. 2017;117(4):580-586. doi:10.1038/bjc.2017.202
53. O'Donnell PH, Guo J, Amos CI, et al. Analysis of the EGFR pathway reveals association of EGFR polymorphisms with cancer susceptibility and outcome in advanced bladder cancer patients. Pharmacogenomics J. 2012;12(3):255-263. doi:10.1038/tpj.2010.90
54. Millán-Rodríguez F, Chéchile-Toniolo G, Salvador-Bayarri J, et al. Primary superficial bladder cancer risk groups according to progression, mortality and recurrence. J Urol. 2000;164(3 Pt 1):680-684. doi:10.1016/S0022-5347(05)67280-4
55. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2013;22(4):795-803. doi:10.1093/hmg/dds486
56. Tomlinson DC, Lamont FR, Shnyder SD, Knowles MA. Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer. Cancer Res. 2009;69(11):4613-4620. doi:10.1158/0008-5472.CAN-08-4567
57. Olsson H, Hultman P, Rosengren B, et al. Cyclin D1 gene amplification and protein overexpression are frequent events in infiltrating urothelial bladder carcinoma. Int J Oncol. 2012;41(4):1144-1152. doi:10.3892/ijo.2012.1537
58. Kim WJ, Kim EJ, Kim SK, et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer. 2010;9:3. doi:10.1186/1476-4598-9-3
59. van Rhijn BW, Vis AN, van der Kwast TH, et al. Molecular grading of urothelial cell carcinoma with FGFR3 and MIB-1 is superior to pathological grade for the prediction of clinical outcome. J Clin Oncol. 2003;21(10):1912-1921. doi:10.1200/JCO.2003.03.105
60. Ouerhani S, Hermanns T, Baer C, et al. The RAS–RAF–MEK–ERK pathway mutations and their sensitivity to MEK inhibitors in urothelial carcinoma. BMC Cancer. 2019;19(1):384. doi:10.1186/s12885-019-5601-2
61. Balbás-Martínez C, Sagrera A, Carrillo-de-Santa-Pau E, et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet. 2013;45(12):1464-1469. doi:10.1038/ng.2799
62. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2013;22(4):795-803. doi:10.1093/hmg/dds486
63. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-8112.
64. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. doi:10.1038/nrc3817
65. Cazier JB, Rao SR, McLean CM, et al. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun. 2014;5:3756. doi:10.1038/ncomms4756
66. Lamy A, Gobet F, Laurent M, et al. Molecular profiling of muscle-invasive bladder cancer in a homogenous series of patients treated with neoadjuvant chemotherapy. Eur Urol. 2015;68(2):284-287. doi:10.1016/j.eururo.2015.03.024
67. Knowles MA, Platt FM, Ross RL, Hurst CD. Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev. 2009;28(3-4):305-316. doi:10.1007/s10555-009-9187-y
68. Ouerhani S, Hermanns T, Baer C, et al. The RAS–RAF–MEK–ERK pathway mutations and their sensitivity to MEK inhibitors in urothelial carcinoma. BMC Cancer. 2019;19(1):384. doi:10.1186/s12885-019-5601-2
69. Chiong E, Lee IL, Dadbin A, et al. Effects of mTOR inhibitor everolimus (RAD001) on bladder cancer cells. Clin Cancer Res. 2011;17(9):2863-2873. doi:10.1158/1078-0432.CCR-10-3198
70. Warrick JI, Kaag M, Raman JD, et al. Transcriptomic differences in muscle-invasive bladder cancer as a function of gender. PLoS One. 2018;13(1):e0194031. doi:10.1371/journal.pone.0194031
71. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-3386. doi:10.1158/1078-0432.CCR-12-0077
72. Kim J, Akbani R, Creighton CJ, et al. Invasive bladder cancer: genomic insights and therapeutic promise. Clin Cancer Res. 2015;21(20):4514-4524. doi:10.1158/1078-0432.CCR-14-1215
73. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171(3):540-556.e25. doi:10.1016/j.cell.2017.09.007
74. Hussain MH, MacVicar GR, Petrylak DP, et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced urothelial cancer: results of a multicenter phase II National Cancer Institute Trial. J Clin Oncol. 2007;25(16):2218-2224. doi:10.1200/JCO.2006.09.7593
75. Sridhar SS, Canil CM, Hotte SJ, et al. Phase II study of lapatinib in patients with squamous cell carcinoma of the head and neck or skin, or with urothelial carcinoma. Invest New Drugs. 2013;31(4):1207-1213. doi:10.1007/s10637-013-9981-8
76. Laé M, Couturier J, Oudard S, et al. Assessing HER2 gene amplification as a prognostic and predictive marker in urothelial carcinoma of the upper urinary tract. BJU Int. 2010;105(1):57-62. doi:10.1111/j.1464-410X.2009.08654.x
77. Sharma P, Callahan MK, Bono P, et al. Nivolumab monotherapy in metastatic urothelial carcinoma: longer-term efficacy and safety results from the CheckMate 032 study. J Clin Oncol. 2018;36(15):1685-1691. doi:10.1200/JCO.2017.75.3803
78. Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558-562. doi:10.1038/nature13904
79. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909-1920. doi:10.1016/S0140-6736(16)00561-4
80. Van Allen EM, Mouw KW, Kim P, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 2014;4(10):1140-1153. doi:10.1158/2159-8290.CD-14-0623
81. Plimack ER, Dunbrack RL, Brennan TA, et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol. 2015;68(2):959-967. doi:10.1016/j.eururo.2015.07.009
82. Iyer G, Al-Ahmadie H, Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133-3140. doi:10.1200/JCO.2012.46.5740
83. Wheeler HE, Maitland ML, Dolan ME, et al. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet. 2013;14(1):23-34. doi:10.1038/nrg3352
84. Goyal L, Shi L, Liu LY, et al. TAS-120, an FGFR inhibitor, in advanced cholangiocarcinoma. N Engl J Med. 2019;381(21):2040-2042. doi:10.1056/NEJMc1910563
85. Subbiah V, Meric-Bernstam F. Advances in targeting FGFR signaling pathways in cancer. Clin Cancer Res. 2015;21(23):5433-5434. doi:10.1158/1078-0432.CCR-15-1800
86. Innocenti F, Owzar K, Irvin RG, et al. UGT1A1 polymorphisms and irinotecan-induced neutropenia: a URCC cancer control and prevention network study. J Clin Oncol. 2009;27(15):2416-2422. doi:10.1200/JCO.2008.19.1748
87. Hoskins JM, Marcuello E, Altes A, et al. Irinotecan pharmacogenetics: influence of pharmacodynamic genes. Clin Cancer Res. 2008;14(6):1788-1796. doi:10.1158/1078-0432.CCR-07-1260
88. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343-350. doi:10.1038/nature15817
89. Lesko LJ, Zineh I, Huang SM. What is clinical utility and why should we care? Clin Pharmacol Ther. 2010;88(6):729-733. doi:10.1038/clpt.2010.214
90. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613-628. doi:10.1016/j.cell.2017.01.018
91. Massard C, Mateo J, Roumier M, et al. Phase I trial of a selective inhibitor of PI3Kα in patients with advanced solid tumors. Cancer Discov. 2019;9(1):36-44. doi:10.1158/2159-8290.CD-18-0718
92. Bedard PL, Tahir S, Razak AR, et al. A phase I study of PX-866, an oral irreversible pan-isoform inhibitor of phosphoinositide 3-kinase, in patients with advanced solid tumors. Invest New Drugs. 2013;31(1):233-240. doi:10.1007/s10637-012-9856-6
93. Sjödahl G, Eriksson P, Liedberg F, et al. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol. 2017;242(1):113-125. doi:10.1002/path.4886
94. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A. 2014;111(8):3110-3115. doi:10.1073/pnas.1318376111
95. Pal SK, Rosenberg JE, Keam B, et al. Efficacy and safety of erdafitinib in patients with FGFR mutations and gene fusions: an update from the phase II BLC2001 trial. J Clin Oncol. 2020;38(15_suppl):5019. doi:10.1200/JCO.2020.38.15_suppl.5019
96. NCT03473743. A study of erdafitinib with or without cetrelimab in participants with metastatic or locally advanced urothelial cancer (BLC2001-03). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03473743
97. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi:10.1126/scitranslmed.3007094
98. Dudley JC, Schroers-Martin J, Lazzareschi DV, et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 2019;9(4):500-509. doi:10.1158/2159-8290.CD-18-0825
99. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257-272. doi:10.1038/s41576-019-0093-7
100. Nguyen QH, Pervolarakis N, Blake K, et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun. 2018;9(1):2028. doi:10.1038/s41467-018-04334-1
101. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396-1401. doi:10.1126/science.1254257
102. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29. doi:10.1038/s41591-018-0316-z
103. Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668-2679. doi:10.1016/j.jacc.2018.03.521
104. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. doi:10.1186/s13059-017-1215-1
105. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299-310. doi:10.1038/nrg.2018.4
106. Fröhlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16(1):150. doi:10.1186/s12916-018-1122-7
107. Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482-1492. doi:10.1093/annonc/mdw168