Conclusion
Artificial intelligence and machine learning have demonstrated significant potential in enhancing the efficiency and accuracy of fusion biopsy in prostate cancer diagnosis. They improve imaging interpretation, lesion detection, targeting accuracy, and risk stratification, contributing to personalized patient care and better clinical outcomes. Addressing challenges related to data standardization, algorithm validation, interpretability, and integration into clinical workflows is essential. Future research should focus on large-scale, multicenter studies, development of hybrid models, and establishment of ethical and regulatory frameworks. Collaborative efforts among multidisciplinary teams will be crucial in realizing the full potential of AI and ML in improving prostate cancer management.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
2. Moyer VA; U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157(2):120-134. doi: 10.7326/0003-4819-157-2-201207170-00459
3. Bjurlin MA, Carter HB, Schellhammer P, Cookson MS, Gomella LG, Troyer D, et al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J Urol. 2013;189(6):2039-2046. doi: 10.1016/j.juro.2013.01.061
4. Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol. 2016;69(1):41-49. doi: 10.1016/j.eururo.2015.08.038
5. Puech P, Randazzo M, Ouzzane A, Gaillard V, Mordon S, Lemaitre L, et al. Magnetic resonance imaging-targeted biopsy for the detection of prostate cancer. Curr Opin Urol. 2015;25(6):510-516. doi:
10.1097/MOU.0000000000000224
6. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al.; PRECISION Study Group Collaborators. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378(19):1767-1777. doi: 10.1056/NEJMoa1801993
7. Wysock JS, Rosenkrantz AB, Huang WC, Stifelman MD, Lepor H, Taneja SS. A prospective, blinded comparison of magnetic resonance imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol. 2014;66(2):343-351. doi: 10.1016/j.eururo.2014.01.002
8. Litjens GJ, Debats O, Barentsz JO, Karssemeijer N, Huisman HJ. Computer-aided detection of prostate cancer in MRI. IEEE Trans Med Imaging. 2014;33(5):1083-1092. doi: 10.1109/TMI.2014.2303821
9. Asvadi NH, Sonn GA. Advances in image-guided prostate biopsy. Curr Urol Rep. 2017;18(8):62. doi: 10.1007/s11934-017-0710-z
10. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/s41591-018-0300-7
11. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505-515. doi: 10.1148/rg.2017160130
12. Chen PHC, Gadepalli K, MacDonald R, Liu Y, Kadowaki S, Nagpal K, et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med. 2019;25(9):1453-1457. doi: 10.1038/s41591-019-0539-7
13. McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep learning in radiology. Acad Radiol. 2018;25(11):1472-1480.
doi: 10.1016/j.acra.2018.02.018
14. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-157. doi: 10.3322/caac.21552
15. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
16. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al.; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. doi: 10.7326/0003-4819-155-8-201110180-00009
17. Wang S, Zhou M, Liu Z, Dong D, Fang M, Dong Y, et al. Deep learning enables automatic contouring of prostate on MRI for radiotherapy planning. Phys Med Biol. 2019;64(4):045002. doi: 10.1088/1361-6560/aaf56e
18. Miller KT, Veeraraghavan H, Foster S, Jambawalikar S, Dugan C, Karimi S, et al. Artificial intelligence–driven workflow for prostate cancer detection and segmentation in multiparametric MRI. Radiol Artif Intell. 2022;4(2):e210101. doi: 10.1148/ryai.210101
19. Xu L, Zhang G, Zhao L, Mao H, Li X, Chen W, et al. Deep learning for automatic prostate segmentation in transrectal ultrasound images. J Ultrasound Med. 2019;38(12):3279-3289. doi: 10.1002/jum.15027
20. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29. doi: 10.1038/s41591-018-0316-z
21. Algohary A, Viswanath S, Shiradkar R, Pahwa S, Purysko AS, Rosen M, et al. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging. 2018;48(3):818-828. doi: 10.1002/jmri.26009
22. Cao R, Bajgiran AM, Mirak SA, Shakeri S, Zhong X, Enzmann D, et al. Joint prostate cancer detection and Gleason score prediction in mp-MRI via FocalNet. IEEE Trans Med Imaging. 2019;38(11):2496-2506. doi: 10.1109/TMI.2019.2902358
23. Patel N, Henry A, Scarsbrook A, Ramachandran N, Short M, Brown L, et al. Multiparametric MRI in prostate cancer—development of a machine learning-derived predictive model of prostate biopsy outcome. Transl Androl Urol. 2021;10(1):304-312. doi: 10.21037/tau-20-1411
24. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6:26286. doi: 10.1038/srep26286
25. Ginsburg SB, Fan RE, DeCastro GJ, Lipsick D, Rusu M, Greer MD, et al. Radiomic features for prostate cancer detection on MRI differ between the transition zone and peripheral zone: preliminary findings from a multi-institutional study. J Magn Reson Imaging. 2020;52(3):992-1000. doi: 10.1002/jmri.27111
26. Min X, Li M, Dong D, Feng Z, Zhang P, Ke Z, et al. Predicting clinically significant prostate cancer in PI-RADS 3 lesions using radiomics. Cancer Manag Res. 2019;11:3531-3544. doi: 10.2147/CMAR.S198809
27. Gong L, Xu M, Fang M, Zou J, Zhang Y, Peng W, et al. Noninvasive prediction of high-grade prostate cancer via multiparametric MRI radiomics. J Magn Reson Imaging. 2020;52(4):1102-1109. doi: 10.1002/jmri.27193
28. Liu W, Chen W, Ding Y, Wei Q, Gao X, Mao H, et al. Artificial intelligence enhanced transrectal ultrasound imaging for MRI-TRUS fusion targeted prostate biopsy. Eur Radiol. 2020;30(9):5439-5448. doi: 10.1007/s00330-020-06888-5
29. van der Leest M, Israël B, Cornel EB, Zamecnik P, Schoots IG, van der Schoot J, et al. High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naïve men: the next step in magnetic resonance imaging accessibility. Eur Urol. 2019;76(5):574-581. doi: 10.1016/j.eururo.2019.07.033
30. Sonn GA, Margolis DJ, Marks LS. Target detection: magnetic resonance imaging-ultrasound fusion-guided prostate biopsy. Urol Oncol. 2014;32(6):903-911. doi: 10.1016/j.urolonc.2013.11.012
31. Stoyanova R, Pollack A, Lynne E, Parra N, Lam LL, Alshalalfa M, et al. Optimization of radiomics-based risk models. J Med Imaging Radiat Sci. 2019;50(3S):S29-S37. doi: 10.1016/j.jmir.2019.06.004
32. Bourbonne V, Jaouen V, Lucia F, Visvikis D, Koulibaly PM, Robin P, et al. Radiomics predicts the occurrence of prostate cancer lymph node metastases in patients with high-risk prostate cancer using multiparametric MRI. Eur Radiol. 2020;30(8):4107-4118. doi: 10.1007/s00330-020-06769-x
33. Zhang L, Tang M, Chen S, Lei X, Li H, Ye R, et al. Multiparametric MRI-based radiomics signature for discriminating clinically significant prostate cancer from nonclinically significant prostate cancer. J Magn Reson Imaging. 2020;52(4):1109-1116. doi: 10.1002/jmri.27191
34. Smith CP, Harmon SA, Barrett T, Bittencourt LK, Law YM, Shebel H, et al. Informatics in radiology: opportunities and challenges in computational imaging and artificial intelligence in prostate cancer. Radiographics. 2021;41(1):E19-E43. doi: 10.1148/rg.2021200138
35. Hectors SJ, Chen C, Kim BN, Li Y, Shih JH, Mulkern RV, et al. Magnetic resonance imaging radiomics-derived machine-learning classifiers for risk stratification of prostate cancer. NPJ Digit Med. 2020;3:48. doi: 10.1038/s41746-020-0250-3
36. Kania A, Lewicki A, Kania D, Olejniczak M, Pietrzak R, Iwulska A, et al. Artificial intelligence algorithms for prostate cancer diagnosis and prediction of the prostate biopsy results. Urol Int. 2021;105(7-8):614-624. doi: 10.1159/000513591
37. Harmon SA, Tuncer S, Sanford T, Pieterek A, Sanford M, Shih JH, et al. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25(3):183-188. doi: 10.5152/dir.2019.18524
38. Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan Y, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open. 2020;3(3):e200265. doi: 10.1001/jamanetworkopen.2020.0265
39. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2
40. Rossi GP, Waks AG, George D, Sherrer SM, Sonpavde G. Artificial intelligence in prostate cancer imaging: where we are and where we are going. Prostate Cancer Prostatic Dis. 2023;26(1):7-15. doi: 10.1038/s41391-022-00531-6
41. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35. doi: 10.1186/s41747-018-0061-6
42. European Commission. Ethics Guidelines for Trustworthy AI. Brussels: European Commission; 2019. Available from: https://ec.europa.eu/digital-single-market/en/news/ ethics-guidelines-trustworthy-ai
43. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prostate cancer clinical trials working group 3 recommendations for trial design and objectives for castration-resistant prostate cancer: from PCWG3 to PCWG4. Eur Urol. 2020;77(5):508-516. doi: 10.1016/j.eururo.2019.12.004
44. European Society of Urogenital Radiology (ESUR). ESUR guidelines on standardization of prostate MRI. Eur Radiol. 2019;29(4):2244-2246. doi: 10.1007/s00330-019-06309-2
45. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine. 2018;27:317-328.
doi: 10.1016/j.ebiom.2017.12.026
46. Larson DB, Magnus DC, Lungren MP, Shah NH, Langlotz CP. Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology. 2020;295(3):675-682. doi: 10.1148/radiol.2020192536
47. Anello M, Chatterjee P, Li X, Ippolito JE, Khosravi P, Vyas N, et al. Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study. JAMA Dermatol. 2020;156(5):501-512.
doi: 10.1001/jamadermatol.2019.5014